Mesure du diagramme des émissions décamétriques Io-Jupiter : un diagnostic de l'interaction planète-satellite

Laurent Lamy^{*1,2}, Lucas Colomban³, Philippe Zarka⁴, Renée Prangé⁴, Manilo Marques⁵, Corentin Louis⁶, William Kurth⁷, Baptiste Cecconi⁴, Julien Girard⁴, Jean-Mathias Griessmeier³, and Serge Yerin⁸

¹Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA) − Université Pierre et Marie Curie [UPMC] - Paris VI, Observatoire de Paris, INSU, CNRS : UMR8109, Université Paris VII − Paris Diderot, Université Pierre et Marie Curie (UPMC) - Paris VI − 5, place Jules Janssen 92190 MEUDON, France

 2 Laboratoire d'Astrophysique de Marseille (LAM) – Pythéas, Aix-Marseille Université – France $^3\mathrm{LPC2E}$ – Univ. Orléans – France

⁴LESIA – LESIA, Observatoire de Paris – France

 5 Departamento de Geofisica, Universidade Federal do Rio Grande do Norte – Brésil $^6{\rm DIAS}$ – Irlande

 $^7 \mathrm{University}$ of Iowa – États-Unis

⁸Institute of Radio Astronomy of NAS of Ukraine, Kharkiv – Ukraine

Résumé

We investigate the beaming of 11 Io-Jupiter decametric (Io-DAM) emissions observed by Juno/Waves, the Nan cay Decameter Array and NenuFAR. Using an up-to-date magnetic field model and three methods to position the active Io Flux Tube (IFT), we accurately locate the radiosources and determine their emission angle

theta from the local mag- netic field vector. These methods use (i) updated models of the IFT equatorial lead an- gle, (ii) ultraviolet (UV) images of Jupiter's aurorae and (iii) multipoint radio measure- ments. The kinetic energy Ee– of source electrons is then inferred from

theta in the frame- work of the Cyclotron Maser Instability. The precise position of the active IFT achieved from methods (ii,iii) can be used to test the effective torus plasma density. Simultane- ous radio/UV observations reveal that multiple Io-DAM arcs are associated with multiple UV spots and provide the first direct evidence of an Io-DAM arc associated with a trans-hemispheric beam UV spot. Multi-point radio observations probe the Io-DAM sources at various altitudes, times and hemispheres. Overall,

theta varies a function of fre- quency (altitude), by decreasing from 75° – 80° to 70° – 75° over 10 – 40 MHz with slightly larger values in the northern hemisphere, and independently varies as a function of time (or longitude of Io). Its uncertainty of a few degrees is dominated by the error on the longitude of the active IFT. The inferred values of Ee– also vary as a function of altitude and time. For the 11 investigated cases, they range from 3 to 16 keV, with a 6.6 ± 2.7 keV average.

^{*}Intervenant