Interface entre la chromosphère et la couronne solaire: modélisation avec une approche 16-moments multi-espèces.

Nicolas Poirier^{*1}, Michael Lavarra¹, Alexis Rouillard¹, Mikel Indurain¹, Pierre-Louis Blelly², Victor Reville¹, Andrea Verdini³, Marco Velli⁴, and Eric Buchlin⁵

¹Institut de recherche en astrophysique et planétologie – Institut National des Sciences de l'Univers : UMR5277, Université Toulouse III - Paul Sabatier, Observatoire Midi-Pyrénées, Centre National de la Recherche Scientifique : UMR5277 – France

²Institut de recherche en astrophysique et planétologie (IRAP) – Université Paul Sabatier - Toulouse 3,
Observatoire Midi-Pyrénées, Centre National de la Recherche Scientifique : UMR5277 – France
³Dipartimento di Fisica e Astronomia, Università di Firenze, Sesto Fiorentino – Italie
⁴UCLA Earth, Planetary and Space Sciences (EPSS, UCLA) – 595 Charles E Young Dr E, Los Angeles,
CA 90095, États-Unis

 $^5 {\rm Institut}$ d'astrophysique spatiale — CNRS : UMR8617, Université Paris-Saclay — France

Résumé

L'atmosphère solaire peut être divisée en deux grandes régions aux mécaniques bien distinctes. D'une part une chromosphère dont le dynamisme est en grande partie régi par les mouvements du gaz photosphérique et où les collisions, le transfert radiatif et les processus d'ionisations/recombinaisons sont des processus qui structurent ce milieu. D'autre part une couronne bien établie, très ionisée et peu collisionelle qui répond principalement aux effets du champ magnétique solaire. La région de transition est l'interface entre ces deux milieux, à travers laquelle certains ions lourds peuvent transiter selon leur niveau d'ionisation. Ce transfert peut mener à un enrichissement de la couronne solaire en ions lourds ayant des potentiels d'ionisation primaire peu élevés. Cet effet FIP est prononcé le long des boucles magnétiques mais aussi dans le vent solaire lent où des différences de composition en ions lourds sont mesurées in situ. Nous présentons les derniers résultats d'une approche 16moments multi-espèces qui vise à coupler les processus physiques susceptibles de réguler le transfert des ions lourds depuis la chromosphère jusqu'à la couronne solaire. Nous montrons notamment que les échanges de matière à travers la région de transition sont fortement conditionnés par le niveau d'ionisation dans la chromosphère et par les processus de chauffage dans la couronne solaire. Ce travail est financé par l'European Research Council pour le projet SLOW_SOURCE - DLV-819189.

^{*}Intervenant