The Helicity Sign of Flux Transfer Event Flux Ropes and its Relationship to the Guide Field and Hall Physics in Magnetic Reconnection at the Magnetopause

Souhail Dahani^{*1}, Rungployphan Kieokaew¹, Vincent Génot¹, Benoit Lavraud¹, Yuxi Chen², Bayane Michotte De Welle³, Nicolas Aunai³, Gábor Tóth⁴, Paul Cassak⁵, Naïs Fargette¹, Robert Fear⁶, Aurélie Marchaudon¹, Daniel Gershman⁷, Barbara Giles⁷, Roy Torbert⁸, and James Burch⁹

¹Institut de recherche en astrophysique et planétologie (IRAP) – Institut National des Sciences de l'Univers : UMR5277, Université Toulouse III - Paul Sabatier, Observatoire Midi-Pyrénées, Centre National de la Recherche Scientifique : UMR5277 – France

²Princeton Plasma Physics Laboratory – États-Unis

³Laboratoire de Physique des Plasmas – Observatoire de Paris, Université Paris sciences et lettres, Ecole Polytechnique, Sorbonne Universite, Université Paris-Saclay, Centre National de la Recherche Scientifique : UMR7648 – France

⁴Departement of climate and space sciences and Engineering – États-Unis
⁵Department of Physics and Astronomy, West Virginia University – États-Unis
⁶Department of Physics Astronomy, University of Southampton – Royaume-Uni

⁷NASA Goddard Space Flight Center – États-Unis

⁸Space Science Center, University of New Hampshire – États-Unis

⁹Southwest Research Institute [Boulder] – États-Unis

Résumé

Flux Transfer Events (FTEs) are transient magnetic flux ropes typically found at the Earth's magnetopause on the dayside. While it is known that FTEs are generated by magnetic reconnection, it remains unclear how the details of magnetic reconnection controls their properties. A recent study showed that the helicity sign of the FTEs positively correlates with the east-west (By) component of the Interplanetary Magnetic Field (IMF). With data from the Cluster and Magnetospheric MultiScale missions, we performed a statistical study of 166 quasi force-free FTEs. We focus on their helicity sign and possible correlations with upstream solar wind conditions and local magnetic reconnection properties. Using both in situ data and the Maximum Magnetic Shear model, we find that FTEs whose helicity sign positively correlates with the IMF By show moderate magnetic shears while those uncorrelated to the IMF By have higher magnetic shears. We propose that for small IMF By, which corresponds to high shear and low guide field, the Hall pattern of magnetic reconnection determines the FTE core field and helicity sign. This work highlights a fundamental connection between the kinetic processes at work in magnetic reconnection and the macroscale structure of FTEs.

^{*}Intervenant