A statistical study of dipolarization fronts observed by MMS

Soboh Alqeeq*1, Olivier Le Contel², Patrick Canu³, Alessandro Retinò², Thomas Chust², Mirioni Laurent², H. Breuillard⁴, A. Alexandrova⁴, Y. Khotyaintsev⁵, R. Nakamura⁶, F. D. Wilder⊓, H. Y. Wei⁶, D. Fischer⁶, R. E. Ergun¹⁰, P.-A. Lindqvist¹¹, C. T. Russell¹², R. J. Strangeway¹², D. L. Turner¹³, and I. J. Cohen¹⁴

¹LPP, CNRS, Palaiseau, France – LPP, CNRS, Palaiseau, France – France ²LPP, CNRS, Palaiseau, France – LPP, CNRS, Palaiseau, France – France ³Laboratoire de Physique des Plasmas – Observatoire de Paris, Université Paris sciences et lettres, Ecole Polytechnique, Sorbonne Université, Sorbonne Université, Université Paris-Saclay, Centre National de la Recherche Scientifique: UMR7648 - France ⁴LPP, CNRS, Palaiseau, France – LPP, CNRS, Palaiseau, France – France ⁵Swedish Institute of Space Physics [Uppsala] – Suède ⁶Space Research Institute of Austrian Academy of Sciences – Autriche ⁷Laboratory of Atmospheric and Space Physics, Colorado – États-Unis ⁸Institute of Geophysics and Planetary Physics, Los Angeles – États-Unis ⁹Swedish Institute of Space Physics, Uppsala, Sweden – Suède ¹⁰Laboratory of Atmospheric and Space Physics, Colorado, USA – États-Unis ¹¹Space and Plasma Group, Royal Institute of Technology, Stockholm, – Suède ¹²Institute of Geophysics and Planetary Physics, Los Angeles, USA – États-Unis ¹³Aerospace Corporation, El Segundo, California – États-Unis ¹⁴The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland – États-Unis

Résumé

In the present work, we consider 49 dipolarization fronts (DF) detected by the Magneto-spheric Multiscale (MMS) mission on 2017, near the Earth's magnetotail equator (—Bx—<5nT). Criteria for selecting DF using an AIDApy routine are based on difference of maximum and minimum values computed with a 306 s sliding window. They request a Bz increase, an ion velocity increase and a density decrease. This first automatic selection is then ajusted manually with the following criteria: Bz increase larger than 5 nT, ion velocity larger than 150 km/s, density decrease and both ion and electron temperature increases. All these events belong to the most common category (A) defined by Schmid et al., 2015 in term of density decrease and temperature increase at the DF. However, based on a superposed epoch analysis of DF basic properties (magnetic field, density, velocity, ...) we distinguish two subcategories of events depending on the shape of the DF. The first subcategory (55.1%) corresponds to a slow decrease of the magnetic field after the DF and is associated with smaller ion velocity and hotter plasma. The second subcategory (44.9%) has the same time scale for the rising and the falling of the magnetic field (a bump) associated with a decrease of ion and electron

^{*}Intervenant

pressures and faster velocity as shown in Alqeeq et al. 2021. For both categories we found that ions are mostly decoupled from the magnetic field by the Hall fields. The electron pressure gradient term is also contributing to the ion decoupling and likely responsible for an electron decoupling at DF. We also analyzed the energy conversion process. For the first subcategory we found that the energy in the spacecraft frame is transferred from the electromagnetic field to the plasma (J·E>0) ahead or at the DF. For the second subcategory, we found the same behavior ahead or at the DF whereas it is the opposite (J·E<0) behind the front. In the fluid frame, we found that the energy is mostly transferred from the plasma to the electromagnetic field (J·E<0) ahead or at the DF for both subcategories but energy dissipation (J·E>0) only occurs behind the front for the second subcategory. The possible origin of these two subcategories is discussed.